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Abstract: Solvolysis of C9 mesylated cinchonidine 1-OMs
and cinchonine 2-OMs in solvent MeOH, EtOH, and
CF3CH2OH affords ring-expanded 1-azabicyclo[3.2.2]nonanes
oxygenated at carbon C3 (“second Cinchona rearrange-
ment”). The newly introduced substituents at C3 and the
neighboring quinolyl group Q′ at C2 adopt quasiequatorial
positions. The derived 1-azabicyclo[3.2.2]nonan-3-ones 5 and
6 are easily equilibrated. On contact with MeOD uptake of
deuterium takes place at room temperature.

Cinchona alkaloids are indispensable auxiliaries in
enantioselective reactions such as the AD reaction.1 A
further important application of quaternized Cinchona
salts is in asymmetric phase transfer reactions.2

In contrast to these many applications the general
chemistry of Cinchona alkaloids has been studied much
less over the years.3 We report the preparation of
enantiopure 1-azabicyclo[3.2.2]nonanes oxygenated at C3
from so-called cinch bases cinchonine and cinchonidine
and ancillary reactions.

Mesylation at C9 under standard conditions afforded
the O-mesylated derivatives 1-OMs and 2-OMs in excel-
lent yield. Heating of the pseudo-enantiomeric4 mesylates
1-OMs and 2-OMs in ethanol (solvent polarity index,
ET(30) ) 51.9)5 at reflux provided the new cage expanded
azabicyclics 3-OEt and 4-OEt, respectively, as major
products. Addition of NaOBz is helpful for intercepting

the product cations giving the benzoyloxy derivatives
3-OBz and 4-OBz. Sodium benzoate also buffers meth-
anesulfonic acid, which is liberated on solvolysis (NaOBz
+ MsOH f NaOMs + HOBz). On changing the solvent
to methanol (ET(30) ) 55.5) the reaction proceeded with
an increase of 1-azabicyclo[3.2.2]nonane products 4-OMe
and 4-OBz (55% vs 31% in ethanol).

In even more polar 2,2,2-trifluoroethanol (ET(30) )
59.5) solvolysis was most selective. The only cage ex-
panded product was benzoyloxy derivative 3-OBz. The
cage-expanded trifluoroethyl ether 3-OCH2CF3 was not
detected, unlike ethyl ether 3-OEt and methyl ether
3-OMe obtained in EtOH and MeOH, respectively
(Scheme 2). Unrearranged benzoic esters 1-OBz and
2-OBz may be recycled.

The structure of the new [3.2.2]azabicyclics was es-
tablished by NMR spectroscopy, including NOE experi-
ments, and corroborated by single-crystal X-ray analysis
(Supporting Information). Ring-expanded 3-X and 4-X
were formed with complete inversion of configuration at
C3 (previously C8) resulting in a quasiequatorial ar-
rangement of substituents at C3 and C2. Unrearranged
solvolysis products 1-OEt, 1-OMe, 1-OBz, and also
1-OCH2CF3 were formed with clean retention of config-
uration at C9. Similarly, pseudoenantiomeric products
2-X were formed with complete retention under these
conditions.6
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SCHEME 1. Preparation of C9 Mesylates of
Cinchonidine and Cinchoninea

a Reagents and conditions: (i) MsCl, NEt3, THF, rt, 3-16 h.
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Swern oxidation of the â-amino alcohol7 3-OH afforded
not only the expected azabicyclic R-amino ketone8 5, but
also its epimer 6 (ratio 5:6 2:1).9

As a test of the extent of kinetic10 versus thermo-
dynamic control of the oxidation procedure, alcohol 4-OH

derived from pseudoenantiomeric cinchonine was oxi-
dized. Again, an epimeric mixture of R-amino ketones (5:6
2:1) was obtained, indicating substantially complete
equilibration of 5 and 6. On contact with MeOD freshly
prepared ketones 5 and 6 smoothly took up deuterium
at C2, exchange being complete after 2 days at room tem-
perature. A number of factors clearly facilitate enolization
and tautomerization of ketones 5 and 6, including
extended conjugation (Scheme 4).

We formulate stereochemistry and product type via
intermediate i to account for 100% inversion (trajectory
‘a’) and 100% retention (trajectory ‘b’) (Scheme 5). Cation
i is a nitrogen-bridged species. In general, the extent of
bridging depends on conformation, electron demand at
carbon C9 (Q′ versus Q), solvent ionizing power, and
pH.11,12

In conclusion a variety of cage expanded and enantio-
pure 1-azabicyclo[3.2.2]nonanes are accessible, both
as R-amino ethers by the “first Cinchona rearrange-
ment”13 and now also as â-amino ethers and their
derivatives by a second Cinchona rearrangement.
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SCHEME 2. Cage Expansion and Stereoretentive
Solvolysis of C9 Mesylates of Cinchonine and
Cinchonidinea

a Key: (i) EtOH, rf; (ii) EtOH, NaOBz, rf; (iii) MeOH, NaOBz,
rf; (iv) CF3CH2OH, NaOBz, rf.

SCHEME 3. Swern Oxidationa

a Reagents and conditions: (i) CH2Cl2, DMSO, (COCl)2, NEt3,
-78 °C-rt, 90%.

SCHEME 4. Tautomers of Ketones 5 and 6

SCHEME 5. Postulated Mechanism: Solvolysis of
2-OMs via Azabridged Cation ia

a Key: ‘a’ and ‘b’ indicate trajectories of attack by external
nucleophile.
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These new substances and their derivatives are of
interest as ligands in asymmetric syntheses and in
pharmacology.
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